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In the theory of turbomachinery elasticity, it is welt known that the introduction of even a small 
nonuniformity in cascades can affect the stability of blade vibrations in a flow and increase considerably the 
dynamic stresses in individual blades with forced vibrations of the cascades. For gas turbomachines, for which 
the natural frequencies of blade vibrations depend only slightly on the ambient medium, this problem has 
been adequately studied. For hydraulic turbines, there have been few studies in this direction. In the present 
work, we examine the effect of small geometric nonuniformity of hydraulic-turbine cascades on the natural 
frequencies and modes of their vibrations in a quiescent liquid. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We study free vibrations of a hydraulic-turbine cascade of 
sufficiently thin blades. The cascade is located between two coaxial cylinders in a quiescent, ideal, 
incompressible liquid. In contrast to the model studied in [1], we shall assume that the cascade has small 
geometric nonuniformity because of inaccurate manufacture and assembly. 

The geometric parameters of the cascade are assumed to be specified. We introduce a homogeneous 
cascade with blades of identical thickness h(r0m), where r0m are the radius vectors of the centroidal surfaces 

S~ ) of the blades. The geometric nonuniformity of the cascade considered is then given by the functions 

6rm(r0m) = rm - r0m, ~hn~(r0m) = hm(rm) - h(r0m). (1.1) 

Here rm are the radius vectors of the corresponding points on the centroidal surfaces Sm of the specified 
blades and hm are their thicknesses. The smallness of the geometric nonuniformity is characterized by the 
parameter 

r = max{I ~rm I/b,  I~h,,~ I l k }  << 1, (1.2) 

where b is the characteristic blade-section chord. 
The geometric nonuniformity of the cascade leads to mistuning of the natural frequencies of blade 

vibrations, which almost always occurs under real operating conditions of turbomachines. As a rule, 

max I. w(1) = r << 1, (1.3) 

where w~ ) is the natural frequency of first-mode vibrations of the ruth blade the and w(D is the natural 
frequency of the corresponding uniform cascade. The introduction of the second small parameter r is due to 
the fact the order of smallness of the quantities in relations (1.2) and (1.3) can be different. 

Assuming that the interaction between the blades is realized only via the liquid, we obtain a matrix 
system of equations that describe the free vibrations of the blade cascade considered: 

N - 1  

( C , n - A M m ) X m = A  ~ A,n,Xn ( , k=w 2, m = 0 , 1 , . . . , g - 1 ) .  (1.4) 
n=0 
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H e r e  Xm are the vectors of the approximation coefficients of the amplitude function of vibrations of the 
centroidal surface of the ruth blade over a certain system of basis functions [1], Cm and Mm are the stiffness 
and mass matrices, Amn are the matrices of the hydrodynamic influence coefficients, w is the natural frequency 
of blade vibrations, and N is the number of blades. We write the matrices of this equation in the form 

C m ~ - - C + ~ C m ,  M m = M + ~ M m ,  Amn=A(~ (1.5) 

where C, M, and A(m ~ are the matrices of the corresponding uniform cascade. Note that the matrices A(m ~ 
have the cyclicity property [2], i.e., 

A ~  ) = Ls, (1.6) 

where 

n - m  for n ~ r n ,  
s=  N + ( n - m )  for n < m .  

Since the values of the elements of the matrices Cm, Mm, and A,nn are continuous functions of the geometric 
parameters of the cascade, the perturbed components of these matrices are represented, according to (1.2), 
as 

6C,, = elCm, 6Mm = ~llQim, 6Arnn = elAmn (1.7) 

[llCmll = O(llCII), IIMmll = O(IIMII), Ilkm, II = O(IIA~),II)]. 

Here and below, we use the spectral norms of the matrices, subjected to Euclidean norms of the corresponding 
vectors [3]. The problem is to solve the generalized eigenvalue problem for system (1.4). 

2. Ten ta t ive  E s t i m a t e  of Pe r tu rba t ions  of Eigenvalues.  The presence of small parameters in 
the formulated problem gives grounds to use the perturbation method to solve the problem. However, the 
effectiveness of this method depends on the conditioning number of eigenvalues, which determines the order of 
magnitudes of the desired eigenvalues with respect to the magnitude of perturbations of the initial data. For 
the generalized eigenvalue problem, to which the formulated problem is reduced, the general estimate of the 
conditioning number [2] is too crude to draw a tentative conclusion on the possibility of using this method. 
Indeed, we write system (1.4) with allowance for (1.5) and (1.7) as one matrix equation 

( B  - A A ) X  = - e l ( 1 3  - A~k)X, 

where A, ~k, B, and ]3 are the block, real, symmetric matrices of the form 

A = diag {D,n}~ -1 + {A(m~ -1, D m =  M, 

.~ = diag {I~m.}0 N - 1  "JF {.~kmn}0 N - I  , l~ m = l~/[m, 

B = d i a g { B m } o  N-l,  B I n = C ,  13=diag{13,n} N-l ,  I3,n=(~,n. 

(2.1) 

We introduce the eigenvalues A~ s) (8 = 1, 2 , . . . ,  N1, where N1 is the order of the matrices A and B), 

and the eigenvectors X~ s) of the problem of free vibrations of the corresponding uniform cascade when the 

right side of Eq. (2.1) is equal to zero. We assume that the values of A~ ~) are numbered in increasing order. 
Note that A~ ~) are real positive numbers. We introduce left eigenvectors y~s) and number them so that 

Y S) = IlXg )ll = 1. (2.2) 

Then, we obtain the relations 

--o ~'"o = (2.3) " 0  ~ " 0  0 / " ~ 0  , 

where c~ ") determines the potential energy of blade deformations whose form corresponds to X~ s), and m~ ") 
determines the generalized mass of the cascade vibrating by the same form. Applying the mean-value theorem 
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to the integral expressions of these quantities, we find that they relate to the number of the corresponding 
eigenvalue of blade vibrations as follows: 

rn~ s) = O(rngl)), cg s ) :  A(s)'~' (1))/A~ 1 ) 0  t~(c 0 ( s =  1 ,2 , . . . ,N1) .  (2.4) 

The mechanical meaning of the above dependence for cg s) is that the potential energy of the blade elements 
is proportional to the square of the curvature of the surfaces, which determines the vibration forms, and 
increases with increase in vibration mode number. 

In accord with [2] and taking into account (2.3), we write the general estimate of the perturbations of 
the eigenvalues in the form 

A s)- �9 0) IA - c ,  llBII I IA- ' [ I  -- e ,  max,. 0 / r m n m  0 . (2.5) 

From (2.5) it does not follow a priori that the perturbation of the eigenvalue will be small, because, first, there 

is a probability of poor conditioning of matrix A, and, second, the value of max c~ ~) is not limited. According 
to (2.4), with increase in the number of basis functions N1, which approximate the blade deformation, the 

value of max c~ s) will also increase because in the limit it will tend to infinity. 

We show that, for the set A0 of the eigenvalues A~ ~) that correspond to low vibration modes, a more 
exact estimate is obtained based on the assumption (1.3). 

For this, we examine the eigenvalue A (r) of system (2.1) that satisfies the condition 

A~ s~ ~ A (r) ~< A~ s~ A~ s~ �9 A0 (A~~ = 0). (2.6) 

We represent the corresponding eigenvector X (r) as a linear combination of the vectors x~S): 

NI 
X(O = ~ ~(OX(') s o , IIX(') [ [  = 1. ( 2 . 7 )  

s=] 

Substituting (2.7) into (2.1), multiplying the left side of (2.1) by the vector y~S), and taking into account 
(2.3), we obtain 

f~) 

where A!s) = (A(') - ^0"(s)w'('),,"0 , g:~s) = Y~s)I3X('), and ~ ' ) =  Y~S).&.X('). 

Since the quantities a~s) and ~ s )  are continuous functions of the geometric nonuniformity parameters 
of the cascade 5hm and 6rm, they can be divided, in a linear approximation, into two components: 

Here 51 s) and 5~ ) are the perturbed components of the potential strain energy of the cascade, the first of which 

depends only on the nonuniformity parameter 6hm and the second depends on 6rm, r'nl s) is the perturbed 

component of the generalized mass of the cascade, which depends on 6h,n, and rh O) is the perturbed component 
of the attached mass of the liquid, which occurs because of the nonuniformity of the cascade in the parameter 
5rm. Taking into account (2.8), from condition (1.3) we obtain 

g;i 1) ,~(1) r~(h 1) g2(a 1) )~(1) r~(') 

From (1.2) with allowance for (1.7) we find - (1), (1) m h / m  0 ~ 1. For the perturbed component of the attached mass 

subject to condition (1.2), the estimate rh~)/mi  1) = O(1) is valid. 
Taking into account the estimates for rh O) and rh O) and using inequalities (2.9) we obtain 

rn(1) /m 1) = O(1), c~1)/c~1)----- O(~)/61,  ~ = 6 1  -I- ~2. (2.]0) 0 / 0 
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From the integral expressions for the corresponding exact values of rh~ s) and ~O) we obtain relations 
similar to (2.4): 

I ~ ' ) l  = O(l~h~l)l), la~s)l = ~O(iK~')I). (2.11) 
C; 

Taking into account (2.10) and (2.11), from (2.8) for s E so we have 

a!r)A! s) = 0(~) .  (2.12) 

Multiplying (2.1) from the left by the vector Yff) = ( x ( r ) )  t, we  obtain 

21 
8) = - ( 2 . 1 3 )  

s=1 

where 5 (r) = Yff)]3Xff) and rhff) = yf f )AXff ) .  By analogy with (2.4) and (2.11), the integral expressions of 
the corresponding exact values of ~:(r) and ~(r) lead to 

I,~(Ol = o(1~')1), la(Ol = c(0") o(,a(,) c~l) t, 0 I)" (2.14) 

Dividing (2.13) by c~ ") with allowance for (2.4), (2.6), (2.10), (2.11), and (2.14) we obtain 

N 1 s o - -  I 

E (a~')) 2A(') < E (a( '))  2A(s) + O(e). (2.15) 
$=SO 8=I  

To estimate the sum on the right side of (2.15), we divide this sum by two components: 

$1 s0--1 

, , , E s). 
8=1 8=31 + 1 

The value of 81 in these expressions is chosen from the condition A! 81) = a >> ~. Applying the HSlder inequality 
to H2, using (2.12), and taking into account (2.2) and (2.7) we obtain 

nl  = ~ O ( J ) ,  n2 = f i T o ( ~ ) .  
a 

Here s2 is the number of elements of the set 

R2 , ( , ) , , , ( , )  , ,o- ,  
= - -  "~0 1 1 ~ 0  ~ a .~s=31+l"  

We assume that 82 is small. Then, using the condition 

and taking into account (2.16), from (2.15) we obtain the estimate 

min [A! s)] = 0( r  r <~ 81 + 82. 
$ 

Thus, for the set 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

1~(s) l~~ (2.20) A0 = l " 0  Is=l , 

where so = 81 + 82, and Sl and 82 are determined from conditions (2.17) and (2.18), we have the asymptotic 
estimate of perturbations of the eigenvalues (2.19). 

3. Use  of  t h e  P e r t u r b a t i o n  M e t h o d .  The standard perturbation method of solution of the 
eigenvalue problem of linear algebra [6] is based on the representation of the desired eigenvalues and 
eigenvectors in the form of expansions in powers of the small parameter ~. In this case, the zero terms of the 
expansions are their corresponding values for the unperturbed matrices. In the case considered, this approach 
is insufficiently effective for two reasons. First, there is a high probability that the unperturbed components of 
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the eigenvalues have similar values. This makes incorrect the standard expansion of the eigenvectors. Second, 
as a consequence of the solution of the generalized rather than standard eigenvalue problem, the order of 
magnitude of perturbations of the eigenvectors differs from e. 

According to [4], we first find a comparison function for the asymptotic representation of the desired 

eigenvectors. For this, taking into account (2.19) and (2.20), we introduce an integer set R~ r) for which, with 
allowance for (2.12), the inequality 

max Ig~)l/> a >> e, r ~< so (3.1) 
seR(0 ~) 

holds. Taking into account (2.7), we represent the desired eigenvectors X (r) as the sum of two components: 

xl ") E xl  r) ~ ~ 0 ,  = Y~ & ) X  0) (3.2) 

According to (3.2) we represent (2.15) in the form 

E (4r))~g ') + E (4r))~g')=O(~)-  (3.3) 
,eR(o') ,r 

Assuming that the number of elements S of the set R~ r) (the number of similar eigenvalues) is small, so that 
S/s2 = O(1), by analogy with (2.16), we find 

E (~,))2gs) = 0(~). (3.4) 
sER~ r) 

We expand the second term (3.3) in two components: 

E (4"))2g ") = n, + n3 
s~l~ r) 

(IIx is determined in Sec. 2). From (2.16), (2.18), (3.3), and (3.4) it follows that 

II1 = O(c), Ha = O(e). (3.5) 

Taking into account (3.1) and (3.2), from (3.5) we have 

[tx~r)ll~ = 0(~) (3.6) 
Thus, with allowance for (3.2), the desired eigenvector is representable as 

X (r) = X~ r) + V~iX~ r), JJX~r)]] = 0(1),  HiX~r)H = 0(1) ,  (3.7) 

and the corresponding eigenvalue, according to (2.12) and (2.19), is representable as 

A (r) = X~O(1 + i(r)), [i(r)[ = O(e), r < so. (3.8) 

We substitute (3.7) and (3.8) into Eq. (2.1) and multiply it from the left by a rectangular matrix whose rows 

are vectors Y~P) [p E R~r)]. Taking into account (2.2), (2.3), (2.8), and (2.12), we obtain 

[diag (hA~ ")) + G - ~ ( r ) J ] X ~ r )  - -  /7, Ilull = 0(C3/2), (3.9) 

where ~(r) = (A "(r)W'(r) 5X~ rs) (A~ s ) -  $~'))/A~ r) J is a unit matrix, and G is a symmetric real matrix - -  1 " 0  ] 1 / ' 0  , = 

with elements 

g(:) = el v ( P ) t l h _  , ( ' )h ,Y(~)  Xl r) {al r) c(r) ~'0 ~-" "'0 ~J~"0 , = : s E R~r)}, [IX~r)[[ = 1 - O(~). 

Using the a posteriori estimate of perturbations of eigenvalues for normal matrices [3], from (3.9) we find 

i (r) = i~ ~) + O(e3/2), lilt)[ = min lASt) I (t = 1 , 2 , . . . , N ) ,  (3.10) 
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where ~t) are the eigenvalues of the matrix [diag ( ~ ) )  + G]. The further solution of the formulated problem 

is restricted to determining the perturbed component of the eigenvalue ~I ~). However, the solution of the 
latter problem involves additional difficulties, because, as in [1], the matrices of the aerodynamic influence 
coefficients fkmn are not determined explicitly. These difficulties are compounded by the fact that, in contrast 
to the matrices A(m ~ their perturbed components tt.rn, do not show the cyclicity property. 

4. D e t e r m i n i n g  t h e  P e r t u r b e d  C o m p o n e n t s  of t he  Coefficients of t he  
H y d r o d y n a m i c  Forces.  We consider the quantities 

- = 
a p s  = A 0 I 0 z 'M.~ .  0 , 

Genera l ized  

( 4 . a )  

which enter into the relation for the elements g(] ) of the matrix G of Eq. (3.9). The value of tips determines 
the perturbed component of the coefficient of the generalized hydrodynamic force that corresponds to the pth 
generalized coordinate and occurs with cascade vibrations of the sth form. 

Assuming that the vectors X~ s) are known [1], we shall seek the vectors 

= A0 ~ x A 0  , ( 4 . 2 )  

which determine the nonstationary components of the distributed hydrodynamic load that acts on the cascade 

blades during cascade vibrations with a frequency w~ s) = ~ 0  s) and by the form X~ s), which correspond to 
natural vibrations of a uniform cascade. As is known [5], natural vibrations of the blades of a uniform cascade 
proceed with the same amplitude and a constant phase shift #k = 2~rk/N (k = 0 , 1 , . . . , N  - 1) between 
vibrations of neighboring blades. The indicated forms of cascade vibrations are due to the hydrodynamic 
interaction of the blades, and natural vibrations of the cascade with N different phase shifts occur in the 
vicinity of each mode of natural vibrations of an isolated blade. Bearing this in mind, we expand the full 
spectrum of eigenvalues of system (2.1) into an aggregate of subsets, A (1) 1~ (jk)~N-1 whose element 

= t 0 I k = O  , 

indices correspond to the initial indices as follows: 

r = 1 + k + (j - 1)g, j = 1 ,2 , . . . ,N0,  (4.3) 

where j denotes the mode number. By analogy with (4.3), we put the indices p and s in correspondence with 
the indices (uq) and (vl), so that 

p = l + q + ( u - 1 ) N ,  s = l + l + ( v - 1 ) Y  (4.4) 

(q,l = O, 1 , . . . , N - 1 ;  u,v = l ,2 , . . . ,No) .  

According to the indicated law of vibrations, we represent the vectors X~ s) and ~(s) as follows: 

X(8) = X ~ t )  1 ,v(u01/v-1 ~(s) 1 nh(v0~N-1. 
= v  A0. J . = 0 ,  = = J . = 0 ,  ( 4 . 5 )  

X(~t) = x~J)e#,a , , ]]xl0~) H = 1; (4.6) On 

= 2_, ~mn~00 c . (4.7) 
n = 0  

The subvector 15(~ t) determines the perturbed component of the distributed unsteady hydrodynamic load 
that acts on the ruth blade when the cascade vibrations obey the above law. Thus, the determination of the 
coefficients a,s (4.1) reduces to solving the hydrodynamic problem of unsteady flow past the blade cascade 
vibrating according to the specified law, and does not require the finding of the matrices in explicit form. 

5. D e t e r m i n i n g  the  P e r t u r b e d  C o m p o n e n t s  of the  Eigenvalues.  According to (3.9) and (3.10), 
the first-order perturbations of the eigenva]ues can be determined by solving the eigenvalue problem for the 
matrix A + G, where 

A = diag (~,5)), G = {g(;)}, p,s e R~ ~). (5.1) 
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Taking into account (4.3)-(4.7), it is convenient to represent the elements of the matrix G in the new indices: 

g(ql) = ~1 

Here 
N - 1  

a(ql) E Y(uq)P(Vl)e-ipqm 
u v  = O 0  m , 

(5.2) 

m=0 (5.3) 
N - 1  

' ~ 0 0  " J " ' ~ 0 0  , = - -  0 m !  00 " 
r n = 0  

We consider some particular cases of similarity between the eigenvalues of a uniform cascade, which 
can be used as a basis for the algorithm of determining eigenvalues in the general case. 

1. Isolated Eigenvalue. The perturbation ~ik) of the eigenvalue A~ jk), for which the set R~ jk) contains 

one element, according to (3.1), (3.9), and (5.1)-(5.3), has the form ~jk) ,(kk) -= 9 j j  

2. Similarity between Two Eigenvalues under Strong Hydrodynamic Interaction of Blades. Under strong 
hydrodynamic interaction for the fixed j t h  vibration mode of a uniform cascade, the eigenvalues that 
correspond to blade vibrations with different phase shifts will be sufficiently isolated from one another. In this 
case, let several eigenvalues for different vibration modes be close to one another so that 

A~k)=A~Jk)(I+eA'~),  IA'~I=O(1), v e R ~  jk), 

where R~ jk) is the set of values of v that correspond to the index of similar eigenvalues A~ ~k). According 
to (5.1)-(5.3), the first-order perturbations of these eigenvatues coincide with the eigenvalues of the matrix 
A + G, where 

A' , (kk)-, 
A = eldiag { v}veR~Jk), G = ~g,,v l u,veROk). (5.4) 

3. Weak Hydrodynamic Interaction for Isolated Eigenvalues of Blade Vibrations in Vacuum. Let the 
hydrodynamic interaction of the blades be small so that 

IIAm, II = elO(llMII), m # n. (5.5) 

This is the c u e  for hydraulic-turbine cascades of sufficiently large pitch-chord ratio and for almost all gas- 
turbomachine cascades. In addition, let the natural frequencies of blade vibrations in vacuum be sufficiently 
isolated, so that 

- " o  ,"0 />a>>e ,  l # j .  (5.6) 

Taking into account (1.5)-(1.7), from (5.5) we obtain the estimate 

IIA )II =  IO(IIMII), IIXm, II --  IO(IIMII), m r (5.7) 

With allowance for (5.7), the blocks A(m ~ for m # n of the matrix A in Eq. (2.1) can be transposed to the 
right side, and the blocks Am,, (m ~ n) can be ignored. Then, taking into account (5.6), we can conclude 

that the set R~ j~ according to (4.3), consists of the numbers s = 1 + l + (j - 1)N, l -- 0 , 1 , . . . , N  - 1. 
This means that, for a certain j t h  mode of blade vibrations, the set of eigenvalues due to the hydrodynamic 
interaction of the blades, with allowance for their nonuniformity, can be considered as perturbed values of 
A~j0). Their perturbed components ~I j~ are determined by solving the eigenvalue problem for the matrix 

G(j) , (ql)~g-1 (in this case, A -- 0). Taking into account the above circumstance, with allowance for = lgjj Iq,l=O 
(1.6) and (4.2)-(4.7), the quantities (5.3), which determine the elements of the matrix G, are represented as 

a~qjl)=Y~JoO)N~lN-l(p~Jol)m:O [ k~__0 ----00D(Jk)'~]+ 1~0)] eizm(/-q) , (5.8) 
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h~ ql) y ~ J ~  ( ( ~  m /~(J~ ~x(JO)e i"rn( l - -q)  
= -- 0 m /  O0 , 

where ~ is a vector that gives the amplitude function of the unsteady hydrodynamic force that acts on ~ 0 0  

the original blade of a uniform cascade vibrating according to the j th  mode with a phase shift #k, and P(m j~ 
is the perturbed component of this vector that is due to the nonuniformity of the cascade for the ruth blade, 
the j th  mode, and zero phase shift. 

The matrix equation from which the desired values of ~j0) are found is conveniently rearranged as 

( j~j0)  _ E_IG(J)E)Z(j) = 0. (5.9) 

Here 

1 ( ( . 2 7 r ) } N - 1  =E_IX~J) E = ~ exp z ~ - m n  Z (j) = Jz ( j ) x N - 1  
m,n=O'  t n J n = 0  , 

and Z(J) is an eigenvector of (5.9). It corresponds to one of the eigenvalues of the matrix G(J) and the nth 

component z (j) determines the vibration amplitude of the nth blade for iiz(r = 1. Performing a similarity 
transformation of the matrix G and taking into account (5.8), we have 

E-aG(J)E = L (/) + diag (~(mJ)), (5.10) 

where L(J) is a cyclic matrix with the elements 

l~ ) = ce~).~ y~O) ~.r P~k)(1 - e-iUk(n-m)); (5.11) 
k=O 

~(j0)~-~ ~v(J0) g,~0)]. 
"~0 ~ v L m ] ' t ~ 0 0  ~ )  c~1O) Y~~ [((~m - - (5.12) 

, ]  

Note that equations that are similar in form to (5.9)-(5.12) were obtained in studies of the stability of 
vibrations of nonuniform cascades in a gas flow [5-7]. However, the mechanical model of the hydroelastic 
vibrations considered differs from the model of cascade vibrations in a gas flow. This difference is as follows: 

(1) the frequency and form of blade vibrations depend significantly on the interaction of the blades 
with the liquid, 

(2) the mistuning parameter of the natural frequencies of blade vibrations ?m can depend on the 
perturbation of hydrodynamic forces due to the geometric nonuniformity of the cascade. 

Because of the above-mentioned circumstances, for a hydraulic-turbine cascade, the problem of elastic 
vibrations of blades with allowance for the hydrodynamic forces acting on the blades should be solved jointly 
with the problem of unsteady flow through the cascade. 

4. General Case of Similarity between Eigenvalues. Let, in the hydrodynamic interaction of blades, several 
eigenvalues of blade vibrations in vacuum be close to one another. This case is fairly typical for cascade 
vibrations in a gas flow, which were considered in [8]. 

With allowance for (3.9), (5.4), (5.9), and (5.10), the first-order perturbations of the set of eigenvalues 
studied will coincide with the eigenvalues of the block matrix [L + diag (A + Rm)], where L = {Lmn}m,n=0,N-1 
and Lmn are square matrices of the order of the number of similar eigenvalues for the j th  mode, with the 
elements 

N - 1  
1(~ ) el y(~O) K" -m,~ = (0) 00 A., P~k)( 1 - e - i ~ k ( n - m ) ) ,  

Cv k = 0  

and R,~ are square matrices of the same order as Lmn, with the elements 

_(.~) = e, YtooO)[(~ m ~(vo)~-/[ ~(~o) 15~o)] 
rrnn C(v0 ) - -  " ' 0  * ' ~ r n / " ~ ' O 0  - -  " 
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TABLE 1 

f ,  Hz 
hum-her [ Perturbation method Iteration method 

I # = 0  # 1 = z / 3  # 2 = 2 z / 3  /23=z  / 2 3 = z  

1 1471  I 458.6 I 453.3 1 4 4 6 . 3 1  448 
2 1 7 1 4 1  707 I 700 I 698 I 700 
3 I 1124 I 1123 I 1122.3 I 1121"8 I 1122 

4 4 (  4 4 0  

4 2 (  i ~ , ~ ~ , , , ~ , ~ 4 2 0 1  , , ~ , , ~ , , ~ , 
0 0 . 0 4  0 . 0 8  e 0 0 . 0 4  0 . 0 8  e 

[ ,  HZ [ f ,  HZ 

1 1 4 0  

1 1 0 0  

j=3 ,  k=3 

6 6 0 1  , , . . . . . . . .  1 0 6 0  . . . .  , ~ ~ - , , 
0 0 . 0 4  0 . 0 8  e 0 0 . 0 4  0 . 0 8  e 

Fig. 1 

6. Ef fec t  o f  S m a l l  G e o m e t r i c  N o n u n i f o r m i t y  of  a C a s c a d e  on  t h e  A m p l i t u d e - F r e q u e n c y  
C h a r a c t e r i s t i c s  o f  C a s c a d e  V i b r a t i o n s .  The results of solution of the eigenvalue problem considered are 
of practical interest mainly for tuning away from resonance phenomena,  which can occur with some sources 
of excitation. As is known the level of resonance vibrations depends not only on the damping in the system 
but also on the form of exciting force. Tha t  is, in the resonance regime with specified damping,  the vibration 
amplitude of t h e s y s t e m  is proportional to the scalar product  of the distributed exciting force function by the 
form function for the corresponding natural vibrations. For example, for turbomachine cascades, the main 
source of excitation is the unsteady hydrodynamic forces due to the peripheral nonuniformity of the flow. 
These forces are a set of harmonics each of which acts on all neighboring blades at equal frequencies and 
amplitudes and also with a constant phase shit/zk. 

All natural vibration forms of a uniform cascade show generalized periodicity. Consequently, for 
resonance of forced vibrations of the cascade under the action of the indicated exciting forces, it is necessary 
that,  in addition to coincidence of the frequencies of the exciting forces with the natural  frequencies, the 
corresponding phase shifts of the forces also coincide. In other words, for each individual harmonic of the 
exciting force, only one eigenvalue from the set of eigenvalues A 0), due to the hydrodynamic  interaction of 
blades, will be resonant. 
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The character of forced vibrations of nonuniform cascades is fundamentally different. From the above 
algorithms of solution of the eigenvalue problem it follows that the vibration forms of nonuniform cascades 
generally do not show generalized periodicity. Therefore, for each harmonic of the exciting force, resonance 
might be expected when its frequency coincides with any natural frequency of cascade vibrations. In this case, 
the vibration amplitudes of different blades differ from one another. The expected regularities can be readily 
illustrated by amplitude-frequency characteristics of forced vibrations of cascades. 

As an example, we studied numerically the effect of cascade nonuniformity on free and forced blade 
vibrations for a PL 587V hydraulic-turbine model, considered in [1]. The cascade consists of six blades. The 
calculation was performed for a blade angle that corresponds to the operating position of the cascade. 

Table 1 gives the results of calculating the dependence of the natural vibration frequency of the uniform 
cascade on the phase shift/~k using the perturbation method, and a comparison with the results of calculation 
using the iteration method [1]. 

According to the results of Table 1, calculations for vibrations of the nonuniform cascade were 
performed by the algorithm (5.9)-(5.12). In the indicated algorithm, the nonuniformity parameters of the 

cascade are the elements ~U) of the matrix (5.10), which characterize the mistuning of the natural frequencies 
of the cascade vibrations. For the given geometric nonuniformity of the cascade, they are determined from 
formula (5.12). They can also be determined approximately from experimental measurements of the natural 

frequencies of isolated blades w U) (in the absence of their hydrodynamic interaction). In this case, it follows 
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from (5.9) that 

N - 1  

m = 0  

Examples of dependences of the natural frequencies of this cascade f on its nonuniformity parameters 
are shown in Fig. 1 by solid curves. The dashed curves show dependences of the vibration frequencies of 
individual blades (ignoring their interaction with one another), which govern the corresponding frequency 
mistuning of the cascade. In this case, the results correspond to the mistuning law of the form 

24 
=  cos- mk (N = 61. (6.1) 

It can be seen from the above dependences that with increase in mistuning and the mode number, the 
natural frequencies of the cascade become similar to the "partial" frequencies. 

Figure 2 shows amplitude-frequency characteristics (solid curves) for various blades of nonuniform 
cascades for the case where the exciting forces act on the blade with the same intensity and zero phase shit 
between the action on different blades (this case is typical of stand tests of blade cascades of hydraulic 
turbines). Artificial damping of blade vibrations is introduced into the calculated model to restrict the 
maximum values of vibration amplitudes. The dashed curves are the amplitude-frequency characteristics 
of the corresponding uniform cascade. The mistuning parameters given in Fig. 2 correspond to the law (6.1). 
It is evident that the maximum vibration amplitudes of individual blades can far exceed the corresponding 
vibration amplitudes of uniform cascades. In addition, as noted above, for nonuniform cascades, in contrast 
to uniform cascades (dashed curves), the resonance phenomenon occurs for all natural frequencies of cascade 
,,ibrations (the so-called separating effect of natural frequencies). 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 94-01- 
01220). 
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